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If we wish our iteration procedure to converge to the second
mode, it is clear that we must eliminate any contribution due
to the first mode. This is accomplished by choosing the
matrix B so as to force the coefficient of g, to zero. Thus,
we set

B = [1/Mi(w:)*le® ©)

and the ¢"-contribution is removed from the iteration pro-
cess. The modified equation to be iterated is

[D — [1/Mi(01)*J0 V(@) ™MA = (1/wHA  (10)

The result of solving this equation will be second mode and
frequency.

The extension of Turner’s method to higher modes and
frequencies is straightforward. If we have determined &
modes and frequencies and wish to find the (k£ + 1)-st mode,
we simply iterate the following equation:

k 1 (P(j)(ﬂp(j))TM _ R
[~ (™ e o

Conclusions

Turner’s method of matrix iteration for higher modes and
frequencies has been developed. It is straightforward to
apply and requires no matrix inversions for its use. It is
particularly adaptable to use with digital computers and
requires only the subtraction of a matrix from the dynamic
matrix D after each successive mode and frequency are found.
This method has been used with great success at Georgia
Tech.

References

! Bisplinghoff, R. L., Ashley, H., Halfman, R. L., Aeroelasticity,
Addison-Wesley, Reading, Mass., 1955, pp. 164-172.

2 Hurty, W. C. and Rubinstein, M. F., Dynamics of Structures,
Prentice-Hall, Englewood Cliffs, N.J., 1964, pp. 123-130.

3 Meirovitch, L., Analytical Methods in Vibrations, Macmillan,
London, 1967, pp. 91-95.

Angle of Attack Increase of an
Airfoil in Decelerating Flow

T. STRAND*
Air Vehicle Corporation, San Diego, Calif.

T has been found experimentally that the maximum

lift coefficient of a transport airplane in flight is substan-
tially higher than that measured in a wind tunnel when the
flight airplane is undergoing an angle of attack increase
while decelerating.*

This purpose of this Note is to determine, using inviscid
theory, the acrodynamic characteristics of a two-dimensional
airfoil whose angle of attack « is increasing at a constant
rate &, and whose velocity U is decreasing at a constant rate

—U. Thus, let
U=Uo,+ Ut ®
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where U, is the velocity at # = 0. Without loss of generality
it may be assumed that the airfoil is a flat plate. To sim-
plify the expressions, it will be assumed that the axis of rota-
tion of the airfoil is located at the midchord. The vertical
distance % to an arbitrary point on the flat plate is then given
by the following expression:

7= —xa= —x(xo + &t) @)

where x is the horizontal coordinate, and «, is the angle of
attack at r = 0.

To obtain a solution, using the concept of acceleration
potential,?® it will be necessary to determine the vertical
acceleration a, of a fluid particle adjacent to the airfoil
surface, i.e.,

d*n 9%y 9%

“ar " Vaxatwa

ay

bl .
U2 =1 — _2Us— U+ at) (3)

Let us now introduce a new coordinate system X, ¥, which
is rotated with respect to the x, y system by the angle «. In
this new coordinate system the flat plate airfoil lies along the
abscissa. Because o <1 we find a, ~ a;. Defining a com-
plex acceleration function W(2)[=¢ + i), where 7 = % + i,
we have

Integration with respect to X along ¥ = 0 on the airfoil yields
= [2U6 + Ul + )% + C(t) ®)

Here C(z) is an integration constant. The flat plate airfoil of
chord ¢ is next mapped conformally onto the unit circle
{ = e", where i = (—1)"/?, by

Z== (/A +1/D) (6)

Thus ¥ = (¢/2) cos 8, 7 = 0 for corresponding points on the flat
plate and on the circle. Equation (5) therefore becomes

= [2Us+ Uleo + at)](c/2)cos8 + C @)

The required acceleration function W, whose imaginary
part will reduce to  [Eq. (7)] on { = ¢ and will die out at
infinity, is given by

W=iAd/{+ i2C/({+ 1) ®
where '
A=[2Ux+ U(oo + a)le/2 )
The real part of Eq. (8) yields
¢ = A sinf + C tan(f/2) 10)

From the general theory of acceleration potentials, we have
the following expression for the lift L of an airfoil in unsteady
flow

c/2
L=2p ¢ dx (11)
-cf2
It is noted that the acceleration potential ¢ is proportional
to the instantaneous chordwise pressure difference between
the upper and lower surfaces of the airfoil. This being the
case, we may, in order to obtain a picture of what is happening,
associate the pressure difference with a fictitious effective
airfoil meanline yielding this pressure distribution in a steady
flow. Denoting the chordwise vortex distribution of the
effective meanline by y, the lift in steady flow becomes

c/2

L=pU| ydx 12

—-c/2
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By comparing Egs. (11) and (12), we now find

v _2¢
U U a3

Thus, by Egs. (9, 10, and 13)

Y — 22k — ko sind 4 2€ tan b
7 2Qky — ko) sinf + L tan 3 (14)
where by definition
) 74
ki= U (15)
. (—U/D)eac
ky = T (16)

The first term on the right-hand side of Eq. (14) is recognized
as being the vortex distribution of a parabolic arc meanline
which is symmetric about the midchord, and whose ideal
angle of attack therefore is zero. The second term on the
right-hand side is the vortex distribution of a flat plate airfoil
at angle of attack. The constant C determines the lift lag
of the additional distribution in unsteady flow. This con-
stant can be found by applying the boundary condition at the
airfoil surface, making use of the Cauchy-Riemann condition,
and performing an integration. This will not be done here,
since it is believed that the lag is insignificant for all cases of
practical interest to maximum lift. Note that there is no
lift lag for the effective camber change of the airfoil.

The effective camber 7. may be found by substituting
Eq. (14) into the following expression from thin airfoil
theory, and integrating.

dn. 9 ()
e a,2m . 7% dx a”n
The result is
ne/c = (2ki — ko)[(1/4) — (%/c)?] (18)

From thin airfoil theory it is also known that the angle for
zero lift oz of a parabolic meanline is equal to twice the
maximum camber, i.e.,

— oz = ks — ko 19

Unsteady flow of the type investigated here will therefore
yield a lift coefficient increase AC. at a given angle of attack
in the linear region as follows:

AC, = 27(k; — ko) (20)

At least part of this change might be expected to affect the
maximum lift coefficient, indicating an increase due to rate of
change of angle of attack and a decrease due to deceleration.
However, the reader may easily convince himself that the
predicted AC. change due to inviscid flow conditions is
negligible compared to the test results obtained, both for jet
transports and also for helicopter rotor blades. It is con-
cluded that the measured large increases in maximum lift
coefficients in unsteady flow are associated with boundary-
layer phenomena, rather than being caused by the inviscid
flow.
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Evaluation of Reissner’s Correction for
Finite Span Aerodynamic Effects

B. K. DONALDSON*
The Boeing Company, Wichita, Kansas

EFERENCES 1 and 2 set forth Reissner’s method for

calculating the effect of finite span upon the unsteady
airloads acting upon an harmonically oscillating wing.
Reissner’s method is limited to incompressible flow, but
it is applicable to any wing planform, at least down to an
aspect ratio of three. An advantage of the Reissner theory
is that it is only a modification of basic strip theory,® which
simplifies its application. In addition, the calculations
required by the Reissner method are less extensive than those
required by lifting surface theory. The accuracy of the
Reissner method is the concern of this Note. To evaluate
that accuracy, the Reissner method was applied to ten
moderate-aspect-ratio model wings. The Reissner flutter
speeds that were the result of those analyses are compared
to experimental flutter speeds obtained from repeated wind-
tunnel testing, and also to basic strip theory results.

The ten model wings which are the subjects of the analyses
were all of sufficiently low aspect ratio that finite span effects
were significant. The model wing geometries, mass distri-
butions, and stiffness distributions were typical of actual
wing construction. Each semispan model had a planform
area of 1620 in.? A typical semispan length was 37.65 in.
This size permitted good precision in measuring model
parameters. With one exception, each model wing represent-
ed a single variation in the geometric design parameters of
aspect ratio, thickness ratio, taper ratio, and leading-edge
sweepback angle. Thus, the wind tunnel data is an indication
of the effect of these wing parameters on flutter speed. See
Table 1. The high speed wings, for which these were models,
were designed for the same airplane. Each wing required.
a different tail loading, so each wing was designed to have
the necessary strength to support a particular wing loading.
As a consequence of this and the different configurations,
the model wings had different stiffness and mass properties.

Because of their single-spar, weighted-segment-type con-
struction, these models were well suited for a structurally
simple evaluation of unsteady airload theories. Each wing
spar supported nine lead weighted, balsa wood panels whose
width was one-tenth of the semispan length. An additional
inboard panel was fixed to the fuselage support from which
the wings were cantilevered. Each of the nine outboard
panels was fixed on the spar at the panel midpoint, except
for the most outboard panel which, for different models, was
fixed at varying, more inboard points. There was no elastic
interaction between panels other than that provided by the
single spar. Thus, an elastic-axis, discrete-mass mathemati-
cal description of the model wings was entirely appropriate.
The ratios of the spar area moments of inertia were such that
just three degrees-of-freedom were indicated for each wing
panel: vertical bending deflection, bending slope angle, and
torsional twist. The center of gravity locations, first mass
moments, moments of inertia, and product of inertia were
carefully measured or estimated for each panel. The spar
stiffness design data were corrected by experimental deflection
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